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LETTER TO THE EDITOR 

Liquid interface tilt angle under thermal gradient: the 
surface-tension temperature coefficient 
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TempCratures. BP 166X. 38042 Grenoble Cedex, France 
$ DCpartement #Etudes des MatCriaux. Centre d’Etudes Nucleaires de Grenoble, 
BP 85X, 38041 Grenoble Cedex. France 

Received 5 April 1991 

Abstract. Under an applied horizontal temperaturegradicnt, the freesurfaceofa thinliquid 
layer gets tilted by a small angle proportional to the surface-tension temperature coefficient. 
We show the effect to be particularly large at the interface between two liquids with 
comparable densities. From Lhe corresponding interfacial slope, measured optically under 
different boundary conditions, one could draw anaccurate determinationof the upper liquid 
free-surface coefficient. 

A horizontal thermal gradient G = V T .  however small, applied to a liquid layer, sets it 
into convection. There are two driving forces: thermal expansion (at work, e.g., in 
meteorology) and the surface-tension temperature (Marangoni) coefficient [l, 31. 

The former effect-bulk thermal convection, scaled by the dimensionless Grashof 
number proportional to the fourth power of layer thickness-dominates in relatively 
thick layers, while thermocapillary convection takes over at small thicknesses, h.  In 
usual liquids under ordinary gravity, the crossover is at about one centimeter. In this 
work, we have in mind thin layers between 1 and 3 mm thick, for which thermocapillary 
convection is very largely dominant. Also, due to the large aspect ratios (length, or 
width, over thickness), we shall not have to bother with end effects. Similarly, we may 
neglect any surfacecurvature and any temperature ‘stratification’ [l, 31: the temperature 
gradient is essentially uniform. 

The temperature coefficient U’ = du/dT, of surface tension U ,  is practically always 
negative, due to the entropy term in the surface free energy. As a result, surface 
convection drives the upper part of the liquid toward the cold end (as does volume 
convection usually). The thermocapillary-convection velocity profile is parabolic [l,  31. 

Because of the pressure field associated with convection, the liquid surface gets 
slightly tilted [2,3], by an angle: 

6 = #(G/pg)u’ /h  (1) 

(g: gravity acceleration, p: mass density of the liquid); the layer thickness increases 
townrdthecoldend. We have pointedout recently [3] that thisformula-which is readily 
extended, if necessary, to include thermal expansion-provides us with an original 
way of determining U ‘  = du/dT (actually, this material parameter is not very well 
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Figure 1. Geometry of the two-layer problem. 
l(2): lower (upper) liquid; a’ and 8 interfacial- 
tension temperature coefficient, and slope; oh: 
free-surface ~ ~~ remperature -~ ~ ~~ ~~~ coefficient ~ ~~~~~~ ~ (this can be 
accurately deduced from fwo successive measure- 
menls of the relatively large angle 0, with and 
without an actual free surface). Note: rhin layer 

hot cold (large aspect ratio) end effects may be ignored. 

documented in the literature). The appropriate generalization, given below, of (1) for 
an interface indicates that the surface slope is spectacularly large in that case, and the 
accuracy on U’ correspondingly improved (with a reduced driving thermal gradient). 

Let us derive the slope of the interface for fwo thin, superposed, immiscible liquid 
layers (1 and2. with massdensitiespl,p2andviscosities q l ,  qr) .  The horizontal thermal 
gradient, C, and the resulting one-dimensional flow velocity, u I  and u2,  lie along Ox. 
The (linearized) Navier-Stokes equations are: 

ap l /ax  - q1(a2u , /a r2)  = ap2/ax - q2(a2u2/ai2)  = 0 (2) 
with the return-flow conditions: 

u t  d r  = u2 d r  = 0 (3) 

where h and (PI - h)  are the thicknesses of the lower (1) and upper (2) layers, respect- 
ively, figure 1. The boundary conditions are, (i) at i = 0 (lower horizontal wall): 
u I  = 0, and. (ii) at r = h :  

where ois the interfacial tension (and U’ its temperature coefficient). For definiteness 
let the temperature decrease toward the right (G < 0): then, o’C is positive (since 
U‘ < 0). The upper boundary condition, at z = H ,  is either: U, = 0, in the ‘rigid’ case 
where the system is bounded by walls both at z = 0 and z = H .  or: 

q,(du2/az) = do,/dx = o6C ( 5 )  
in the ‘free’ case (oo is the free-surface tension of upper liquid). 

Consider first the rigid case. Let us formally decompose (46) into: 

q l ( a u l / a z )  = dul /dx  q , (a~ , /az)  = -do2/& U’ = 0; + 0; .  ( 6 )  
From (2)-(4) (and u l ( r  = 0) = u2(z = H )  = 0), we get, for an unperturbed interface, 
the pressure gradients: 

n, = apI /ax = 3cu; /2h  n, = ap2/ax = ~ G U ; / ~ ( H  - h) (7) 

(8) 

and the velocities at the interface (z = h): 

0 1  = Gh~i/4q1 = ~2 = G(H - h ) ~ $ / 4 q 2 .  

Hence U [  and U $  

(0; = ~ ‘ [ l  + (q l /q z ) (H  - h ) / h ] - ]  = u’/(l + CY)) 
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and: 

n, = (3Gu'/2h)(u/(l  + LY) I I 2  = [3Go'/2(H - h ) J / ( l  +e). (9) 
Now, this pressure field will induce a slight tilting of the interface, by an angle 0. Take 
two neighbouring points A and B on the interface, in the ( x ,  z) plane xB - xA = ax;  we 
may write 

so that: 

(which is the straightforwardgeneralization of 0 = (dp /ax) /gp ,  leading to ( 1 )  for a single 
layer). In the case of a thin upper layer ( H  - h 4 h ) ,  the pressure gradient there, n, 
(equation (9)), is much larger than n, (so much so that CY = ( q l / q 2 ) ( H  - h ) / h  is small 
then, for comparable viscosities), and (10) reduces to: 

p 0  = pA + n l s x  - plgesx = p A  + n 2 s x  - p g e s x  

0 = (nl - n2) /g (p1  - p2)  (10) 

0 = -3Gu' /2g (p1  - p2)(H - h). ( 1 1 )  
That is, the thin upper layer thickens at the cold end ( p ,  > p 2  in ow notation, and 
Go'  > 0 as we have seen). This is just the same trend as for a free-surface single layer 
(equation ( 1 ) ) .  but the effect is much enhanced, both for geometrical h/ (H - h) and 
inertial p / ( p l  - p 2 )  reasons. 

A similar enhancement occurs in the 'free' case (free-surface upper layer with tension 
uo, (5)). Then, the solution of (2)-(4) is particularly simple when q 2  S q 1  (viscous upper 
layer: the 'oil-on-water' case): 

e =  -e O ( P ~ / ( P I  - ~ d )  = -G(o' + oA)/g(Pi - P , ) ( H -  h )  (12) 

where 8, is the slope of the upper, free surface, and U ;  = do,/dT. 0 is negative while 
the smaller angle, Bo, is positive. The (now unconstrained) upper layer again thickens 
on the cold side. The same results holds, for comparable viscosities, in the case of a thin 
upper layer. Of course, we have assumed implicitly that the applied thermalgradient is 
weak enough for the relative variation of layer thicknesses along Ox (in ( 1 1 )  and (12) as 
well as in ( 1 ) )  to remain small. 

Thus, if one has access (direct optical access, say) to the interfacial slope, it should 
be easy to get an accurate measurement of u', the interfacial temperature coefficient. 
Furthermore, comparing (11) and (12) ,  we may obtain the principle of a simple and 
accurate measurement of U;.  For ordinary liquids under modest temperature gradients, 
G ,  of a few K cm-', ( 1 )  yields 0 of order one degree. This is easily measurable by optical 
means (Poggendorff deviation, 28, of an incident light beam). We may, however, take 
advantage of the much larger interfacial tilt angles and deduce ob from ( 1 1 )  and (12) 
(with the thickness and viscosity restrictions discussed above). Using an underlying 
liquid (liquid 1 ) ,  a first measurement, in a closed box (rigid case), of the interfacial angle 
leads to the interfacial temperature coefficient, u', through ( 1 1 ) .  A second measure- 
ment, with the same liquid couple but now in the free case, then yields the required U; 

via (12). It is essential of course that the two liquids be immiscible and the free surface 
itself non-contaminated. Due to the larger sensitivity, these measurements could be 
conducted by direct optical observations. Preliminary experiments on simple organic 
liquids, by Amrit and co-workers, confirm the feasibility of the method. 

We thank J Bossy and J Souletie for stimulating contributions concerning experimental 
demonstration of the effect. 
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